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What are time series?
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What are time series?

Data observed over time

24) — US Regular Conventional Gas Price (right)
— Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma (left)
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What are time series?

Stochastic processes indexed by integers

o (X |te T} T=27

Confirmatory data analysis

@ Goal: See if model is sound

Mainly about: theorems, models, proofs

@ Pros: Provably correct, theoretically sound

Cons: " All models are wrong” - George Box
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What are time series?

Data vs Process

o x; = {114,117,104,...} o {Xijte T} T=2

@ Exploratory data analysis o Confirmatory data analysis
o Work with data e Work with models

@ Pros: fast, domain specific @ Pros: theoretically sound
@ Cons: possibly unsound @ Cons: slow, simplification
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What are time series data?

Sunspot counts (monthly)
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What are time series data?
EU stock market prices (daily)?
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What are time series data?
Volcano topography?
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Time series data vs other data

Some bad news, some good news

@ | High dimensionality
o | Classical statistics don't work
@ 1 Temporal connection allows forecasting

o 1 Solid theory
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and p

Some math we'll need later
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Some math we'll need later

Autocovariance

Mt = E[Xt]
o (7, k) = E[( Xy — pur)( Xk — 11s)]

o (= undefined, f,=2L1%", xt(i)

Ar k) = 7h5 I (e — ) O = 1)
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Some math we'll need later

Autocorrelation

N ~(7,k)
° /)(/) ~(7,7)y(k,k)
o p(r,k) = 0

A )v(k,k)

o With only one realization x;, we can’t compute this
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Stationarity

What, why and how?
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Stationarity

What? - Theoretical definition

@ Strict stationarity

> Fx(Xt ..... Xt+k):FX(Xt~T¢~-~'Xt+T+k) forall t, 7. ke Z
» Time and order do not matter

o Weak stationarity
» E[X;]=pu forall t
» E[X?] < oo
» E[(X¢ — p)(Xewr — )] = y(7) forall t and any 7
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Stationarity

A short quiz
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Stationarity
For d_Hmm_ieSnon-statisticians

@ Data can't be stationary or non-stationary

Stationarity is a property of

Correct question: " Was my data generated by a stationary process?”

Roughly: "no change over time"
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Stationarity
Why?

o Classical statistics require strict stationarity
@ Most models require at least weak stationarity

@ Transformation to stationary form often possible

Non-stationary theory is complex

@ We can estimate autocorrelation
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Stationarity

How?

@ Augmented Dickey-Fuller test

@ Priestley-Subba Rao test

@ Hyndman's suggestion

o Vicuali ,
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The ARMA model

Not the video game series. . .
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ARMA model

Autoregressive-Model (AR)

@ AR(1): Xe=c+60Xi—1+ €

@ AR(p): Xt =c+ 01 Xe—1+ 602 Xe2+ ...+ OpXt, + €t

Simple linear model of past

Stationary if > 6 is small

Least squares parameter fitting
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ARMA model

Moving Average-Model (MA)

@ MA(1): Xi=c+ €+ per—q
@ MA(q): Xt =c+er+ drer—1+ Poero+ ...+ Pger—g

@ Don't confuse with rolling average

Always weakly-stationary

@ Assume distribution and maximize likelihood
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ARMA model

Autoregressive Moving Average-Model

ARMA(p,q): Xe=c+ 3P 10X i+ Y0 djerj+ e

ARMA(p,q) : xt = AR(p) + MA(q) — c — &

Approximates large p or gq

Stationary if AR part stationary

Parameter fitting as above
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How can we choose p and g7

ARMA order estimation

Maximilian Toller (Know-Center) Time Series Data Forecasting 2019-04-17 23 /37



ARMA order estimation

Partial autocorrelation

e (1) =p(1)

° (l(T) — BlXr1—Pspraxo,. X} Kr41) = 1)(Xi —Pap (1 %y Xp 3 (X1) )]
VE(Xr41=Psp(1,xy,... . x7 } (X7 1) = 1)2IEl(X1 —Psp (1,X, ..., x, } (X1)—1)%]

o ACF with lagged values estimated by linear model

Usually Yule-Walker equations or OLS

Maximilian Toller (Know-Center) Time Series Data Forecasting

2019-04-17

24 /37



ARMA order estimation
Estimating AR order p

@ a7 < p) will be non-zero
e a7 > p) will be zero

o Compute &

p is lag where & enters confidence borders
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ARMA order estimation
Estimating AR order p

PACFKF of AR(—0.8)
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ARMA order estimation
Estimating MA order g

e Plot ACF
@ g is lag where ACF becomes zero

@ Hyndman's method for stationary
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ARMA order estimation
The Box-Jenkins Method

ACF Shape

Indication

Some spikes, almost zero
Exponential decay to zero
Alternating exp. decay to zero
Delayed decay

Peaks at fixed intervals

Never reaches zero

Everything almost zero

MA model, g = time to first zero
AR model, plot PACF to find p
AR model, plot PACF to find p
ARMA model

Data are seasonal, use SARMA
Probably not stationary, detrend
Data are independent, noise
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Dt and St

Trend and Seasonality
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Trend and Seasonality
The additive model

(] Xt:Dt+5t+yt Dt:f(t) St:g(t).st:5t+k
@ Y;...stochastic residual
o Estimate [5t and §t

@ Subtract and analyze residual
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Detrending

o Filters

» Assume S; = 0Vt
» Remove arbitrary polynomial

@ Regression

» Linear
» Non-isotonic
» [sotonic

@ Differencing
» Stochastic trend

> V(Xt) - Xt - thl

e ARIMA(p, d, q) : Integrate AR(p) + MA(q) d times
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Trend and Seasonality
Detrending: Example
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Trend and Seasonality
Identifying Seasonality

Repeating events — Fourier Analysis

Periodogram:

» Fourier Sequence F,(w)
» Fast Fourier Transform of ACF

1
arg max(Fp)
w

Peak Analysis: s =

SARIMA(p, d, q)(P, D, Q)s
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Tools

Some software recommendations

o R
> http://www.statmethods.net/advstats/timeseries.html
» https://cran.r-project.org/web/views/TimeSeries.html
» https://github.com/robjhyndman/
o Python
» Prophet
» TS-Fresh
» Pandas, NumPy, scikit-learn, Statsmodels
e MatlLab/Octave
» TSA
» Signal
-
e Java
> JMotif
> Weka

> L.
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One last thing. ..

Remarks about artificial neural networks

@ Feedforward ANN simulates nonlinear-MA(q)

@ Recurrent ANN simulates nonlinear -ARMA(p, q)
@ Autoregressive ANN # AR(p)
@ Long Short-Term Memory, Gated Recurrent Units
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The End

(Now is the right time for questions)
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library (forecast)

ts_data < AirPassengers %% c() %% as.ts()
ts_data %% plot. ts()

modell < Arima(ts_data  order = ¢(2,0,0))
modell %% forecast %% plot (showgap=F)
model1$sigma2

model1Saic

ts_data %% plot. ts()

model2 <~ Arima(ts_data, order = ¢(0,0,2))
model2 %% forecast %% plot (showgap=F)
model2$sigma2

model28aic

ts-data %% plot.ts()

model3 <~ Arima(ts_data, order = c(2.0,2))
model3 %% forecast %% plot (showgap=F)
model3$sigma2

model3Saic

ts_data %% plot ts()
ts_data %% acf(lag.max = 50)
ts_data %% pacf()

model4 <~ Arima(ts_data, order = c(2.0.,0
modeld %% forecast %% plot (showgap=F)
modeld$sigma2

model4Saic

)

detrended_data < ts_data %% diff()
detrended_data %% plot()

model5 <~ Arima (ts_data . order = c(2.1,
model5 %% forecast %% plot (showgap=F)
model5Ssigma2

model5$aic

0))

detrended_data %% plot ()
detrended_data %% acf()
detrended_data %% pacf()

model6 <~ Arima(ts_data , order = c(2.1,1))
model6 %% forecast () %% plot (showgap=F)
model6Ssigma2

model6Saic

detrended_data %% acf(lag.max = 100)
pgram <~ ts_data %% spec. pgram (
{pgramSspec) %% which.max() %% {1/pgramSfreq[.]}

model7 <~ Arima(ts_data, order = c(2.1.1),seasonal = list (order=c(0,1,0), period =12))
model7 %% forecast () %% plot (showgap=F)

model7$sigma2

model7Saic

model8 <~ auto.arima(ts_data)
model8 %% forecast () %% plot (showgap=F)
model8$sigma2

model8Saic
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