Time Series Data Forecasting

Machine Learning Graz Meetup

Maximilian Toller

mtoller(at)know-center.at

2019-04-17

What are *time series*?

What are time series?

Data observed over time

What are time series?

Stochastic processes indexed by integers

- $\{X_t|t\in T\}\ T=\mathbb{Z}$
- Confirmatory data analysis
- Goal: See if model is sound
- Mainly about: theorems, models, proofs
- Pros: Provably correct, theoretically sound
- Cons: "All models are wrong" George Box

•
$$x_t = \{114, 117, 104, \ldots\}$$

- Exploratory data analysis
- Work with data
- Pros: fast, domain specific
- Cons: possibly unsound

•
$$\{X_t|t\in T\}\ T=\mathbb{Z}$$

- Confirmatory data analysis
- Work with models
- Pros: theoretically sound
- Cons: slow, simplification

What are time series data?

Sunspot counts (monthly)

What are time series data?

EU stock market prices (daily)?

What are time series data?

Volcano topography?

Time series data vs other data

Some bad news, some good news

- ↓ High dimensionality
- ↓ Classical statistics don't work
- † Temporal connection allows forecasting
- ↑ Solid theory

 γ and ρ Some math we'll need later

Autocovariance

•
$$\mu_t = \mathbb{E}[X_t]$$

•
$$\hat{\mu} = \text{undefined}, \quad \hat{\mu}_t = \frac{1}{m} \sum_{i=1}^m x_t^{(i)}$$

•
$$\hat{\gamma}(\tau, k) = \frac{1}{n-1} \sum_{i=1}^{N} (x_{i\tau} - \mu_{\tau})(x_{ik} - \mu_{k})$$

Some math we'll need later

Autocorrelation

$$\hat{\rho}(\tau,k) = \frac{\hat{\gamma}(\tau,k)}{\sqrt{\hat{\gamma}(\tau,\tau)\gamma(k,k)}}$$

• With only one realization x_t , we can't compute this

Stationarity What, why and how?

What? - Theoretical definition

- Strict stationarity
 - $ightharpoonup F_X(X_t,\ldots,X_{t+k}) = F_X(X_{t+\tau},\ldots,X_{t+\tau+k})$ for all $t,\tau,k\in\mathbb{Z}$
 - ► Time and order do not matter

- Weak stationarity
 - $ightharpoonup E[X_t] = \mu$ for all t
 - $ightharpoonup E[X^2] < \infty$
 - $E[(X_t \mu)(X_{t+\tau} \mu)] = \gamma(\tau)$ for all t and any τ

A short quiz

For dummies non-statisticians

- Data can't be stationary or non-stationary
- Stationarity is a property of processes
- Correct question: "Was my data generated by a stationary process?"
- Roughly: "no change over time"

Stationarity Why?

- Classical statistics require strict stationarity
- Most models require at least weak stationarity
- Transformation to stationary form often possible
- Non-stationary theory is complex
- We can estimate autocorrelation

How?

Augmented Dickey-Fuller test

Priestley-Subba Rao test

Hyndman's suggestion

Visual inspection

The ARMA model

Not the video game series. . .

ARMA model

Autoregressive-Model (AR)

- AR(1): $X_t = c + \theta X_{t-1} + \epsilon_t$
- AR(p): $X_t = c + \theta_1 X_{t-1} + \theta_2 X_{t-2} + ... + \theta_p X_{t_p} + \epsilon_t$
- Simple linear model of past
- Stationary if $\sum \theta$ is small
- Least squares parameter fitting

ARMA model

Moving Average-Model (MA)

• MA(1):
$$X_t = c + \epsilon_t + \phi \epsilon_{t-1}$$

• MA(q):
$$X_t = c + \epsilon_t + \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \ldots + \phi_q \epsilon_{t-q}$$

- Don't confuse with rolling average
- Always weakly-stationary
- Assume distribution and maximize likelihood

Autoregressive Moving Average-Model

• ARMA
$$(p,q)$$
: $X_t = c + \sum_{i=1}^p \theta_i X_{t-i} + \sum_{j=1}^q \phi_j \epsilon_{t-j} + \epsilon_t$

- $ARMA(p,q): x_t = AR(p) + MA(q) c \epsilon_t$
- Approximates large p or q
- Stationary if AR part stationary
- Parameter fitting as above

How can we choose p and q?

Partial autocorrelation

- $\alpha(1) = \rho(1)$
- $\bullet \ \alpha(\tau) = \frac{\mathbb{E}[(X_{\tau+1} P_{\overline{sp}\{1, X_2, \dots, X_{\tau}\}}(X_{\tau+1}) \mu)(X_1 P_{\overline{sp}\{1, X_2, \dots, X_{\tau}\}}(X_1) \mu)]}{\sqrt{\mathbb{E}[(X_{\tau+1} P_{\overline{sp}\{1, X_2, \dots, X_{\tau}\}}(X_{\tau+1}) \mu)^2]\mathbb{E}[(X_1 P_{\overline{sp}\{1, X_2, \dots, X_{\tau}\}}(X_1) \mu)^2]}}$
- ACF with lagged values estimated by linear model
- Usually Yule-Walker equations or OLS

Estimating AR order p

- $\alpha(\tau \leq p)$ will be non-zero
- $\alpha(\tau > p)$ will be zero
- Compute $\hat{\alpha}$
- ullet p is lag where \hat{lpha} enters confidence borders

Estimating AR order p

PACF of AR(0.1 x 10)

Estimating MA order q

- Plot ACF
- q is lag where ACF becomes zero
- Hyndman's method for stationary

The Box-Jenkins Method

ACF Shape	Indication
Some spikes, almost zero	MA model, $q = time to first zero$
Exponential decay to zero	AR model, plot PACF to find p
Alternating exp. decay to zero	AR model, plot PACF to find p
Delayed decay	ARMA model
Peaks at fixed intervals	Data are seasonal, use SARMA
Never reaches zero	Probably not stationary, detrend
Everything almost zero	Data are independent, noise

 D_t and S_t Trend and Seasonality

The additive model

•
$$X_t = D_t + S_t + Y_t$$
 $D_t = f(t), S_t = g(t), S_t = S_{t+k}$

- \bullet Y_t . . . stochastic residual
- ullet Estimate $\hat{D_t}$ and $\hat{S_t}$
- Subtract and analyze residual

Detrending

- Filters
 - ▶ Assume $S_t = 0 \ \forall t$
 - ▶ Remove arbitrary polynomial
- Regression
 - Linear
 - Non-isotonic
 - Isotonic
- Differencing
 - Stochastic trend
- ARIMA(p, d, q): Integrate AR(p) + MA(q) d times

Detrending: Example

Identifying Seasonality

- Repeating events → Fourier Analysis
- Periodogram:
 - ▶ Fourier Sequence $\mathcal{F}_n(\omega)$
 - ► Fast Fourier Transform of ACF
- Peak Analysis: $s = \frac{1}{\underset{\omega}{\operatorname{arg max}(F_n)}}$
- SARIMA $(p, d, q)(P, \mathcal{D}, Q)_s$

Tools

Some software recommendations

- R
- http://www.statmethods.net/advstats/timeseries.html
- https://cran.r-project.org/web/views/TimeSeries.html
- https://github.com/robjhyndman/
- Python
 - Prophet
 - ► TS-Fresh
 - ▶ Pandas, NumPy, scikit-learn, Statsmodels
- MatLab/Octave
 - ► TSA
 - Signal
- Java
 - IMotif
 - Weka
 - . . .

One last thing...

Remarks about artificial neural networks

- ullet Feedforward ANN simulates nonlinear- $\mathrm{MA}(q)$
- Recurrent ANN simulates nonlinear -ARMA(p, q)
- Autoregressive ANN \neq AR(p)
- Long Short-Term Memory, Gated Recurrent Units

The End

(Now is the right time for questions)

```
library (forecast)
ts data <- AirPassengers %% c() %% as ts()
ts data %% nlot ts()
model1 <- Arima(ts_data.order = c(2.0.0))
model1 %% forecast %% plot(showgap=F)
model1$sigma?
model1$aic
ts_data %% plot.ts()
model2 <- Arima(ts.data order = c(0.0.2))
model2 %% forecast %% plot(showgap=F)
model2$sigma2
model2$aic
ts data %% plot ts()
model3 \leftarrow Arima(ts_data \cdot order = c(2.0.2))
model3 %% forecast %% nlot(showgan=E)
model3$sigma?
model3$aic
ts_data %% plot.ts()
ts_data %% acf(lag.max = 50)
ts.data %% pacf()
model4 <- Arima(ts.data . order = c(2.0.0))
model4 %% forecast %% plot(showgap=F)
model4$sigma2
model4$aic
detrended_data <- ts_data %% diff()
detrended_data %% plot()
model5 \leftarrow Arima(ts_data. order = c(2.1.0))
model5 %% forecast %% plot(showgap=F)
model5$sigma2
model5$aic
detrended data %% plot()
detrended_data %% acf()
detrended_data %% pacf()
model6 \leftarrow Arima(ts_data. order = c(2.1.1))
model6 %% forecast() %% plot(showgap=F)
model6$sigma2
model6$aic
detrended_data %-% acf(lag.max = 100)
neram <- ts_data %% spec.pgram()
(ngramSenec) %% which max() %% (1/ngramSfreq[.])
model7 \leftarrow Arima(ts.data. order = c(2.1.1), seasonal = list(order=c(0.1.0), period=12))
model7 %% forecast() %% plot(showgap=F)
model7$sigma2
model7$aic
model8 <- auto.arima(ts_data)
model8 %% forecast() %% plot(showgap=F)
model@$riama?
model8$aic
```