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Convolutional Neural Network
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Transfer Learning
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Transfer Learning Landscape

Source Data (not directly related to the task)

Domain Adaptation
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http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/transfer%20(v3).pdf

Fine-Tuning

- Scenario
- Lot of labeled source data
- limited labeled target data

- ldea: train a model by source data, then fine-tune the model with the target
data.
- Why?
- Training on target data only, will likely overfit.
- May reduce training time with pretrained models



Fine-Tuning Example

- Kaggle Imaterialist Challenge
- Labeling of Household items (glass,chair etc)
- Multiclass Classification Problem
- 128 Classes

- Training 190k Images
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Fine-Tuning
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Results

- Using a pretrained ResNet50 model on ImageNet and finetuning
84% Accuracy - Top 20%

- Avg Ensemble of 11 different pretrained models and finetuning
89% Accuracy - First Place

- ResNet50 takes 4 days to train on a GTX1060



Bottlenecking

- |dea: train a model by source data -> use the model to extract features for the
target data -> train a new model with the extracted features
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Results

- Initial feature extraction takes 6 hours on a GTX 1060
- Training a models takes 20min

- Reduces the data from 30gb to 2-3gb

- 82% Accuracy - Avg Ensemble of 5 bottleneck models
- Top 38% Place - 159/436
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AND NOW FOR SOMETHING

COMPLETELY DIFFERENT




Multitask Learning
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Multitask Learning (2)

- Why consider it?
- Attention focusing
- Eavesdropping
- Regularization

- Lot of Architectures
- Cross-stitch Networks
- Fully-Adaptive Feature Sharing
- efc



Multiple Language Translation

Lang-Pair En-Es | En-Fr | En-NI | En-Pt
Single NMT | 26.65 | 21.22 | 28.75 | 20.27
Multi Task 28.03 | 22.47 | 29.88 | 20.75
Delta +1.38 | +1.25 | +1.13 | +0.48

Table 3: Multi-task neural translation v.s. single
model given large-scale corpus in all language
pairs

X, X, Xy,

Figure 2: Multi-task learning framework for multiple-target language translation



Domain Adversarial Training

- Scenario
lot of labeled source data
lots of unlabel target data

- Goal: Train a model which performs well on unlabeled data.



Domain Adversarial Training

- Scenario
- |ot of labeled source data
- lots of unlabel target data

- Goal: Train a model which performs well on unlabeled data.
- Goal 2.0: The distribution of the features extracted are similar
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Domain Adversarial Training

- Scenario
- |ot of labeled source data
- lots of unlabel target data

- Goal: Train a model which performs well on unlabeled data.
- Goal 2.0: The distribution of the features extracted are similar




Domain Adversarial Training

Maximize label

Maximize label classification accuracy + rantt
classification accuracy

minimize domain classification accuracy
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Transfer Learning (Hung-vi Lee)



http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/transfer%20(v3).pdf

Domain Adversarial Training Example
ﬁ ‘L_, 5 01917 N
B 9 181 71 ;5]'8
“Windows digits” “House numbers”

No Adapt - 87% Acc
With Adapt - 91% Acc



Zero Shot Learning

- Scenario
lot of labeled source data
unlabeled target data

- Goal: Train a model which performs well on target data.
-  How? Inference through attributes, metadata etc



Zero Shot Learning Attributes

images attributes class

black-white
has tail
lives on land
small
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gray
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lives in water
big

- whale




Zero Shot Learning Attributes
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Multimodal Embeddings
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Zero Shot Learning Attributes

- Can Classify unseen classes.
- If 1:1 Mapping can be ensured

- Ex: Weimaraner Dog

gray, has tail, is on land, small
[0,1,1,1]




Zero Shot Learning Attributes Wikipedia

- Use Wikipedia and Word2Vec/GloVe articles as object description

Whale

From Wikipedia, the free encyclopedia

This article is about a marine mammal. For other uses, see Whale (disambiguation)
For further information, see Cetacea.

Whales are a widely distributed and diverse group of fully aquatic placental marine mammals. They are an informal grouping within the infraorder Cetacea, usually excluding dolphins and porpoises. Whales, dolphins and
porpoises belong to the order Cetartiodactyla with even-toed ungulates and their closest living relatives are the hippopotamuses, having diverged about 40 million years ago. The two parvorders of whales, baleen whales

(Mysticeti) and toothed whales (Odontoceti), are thought to have split apart around 34 million years ago. The whales comprise eight extant families: Balaenopteridae (the rorquals), Balaenidae (right whales), Cetotheriidae
(the pygmy right whale), Eschrichtiidae (the grey whale), Monodontidae (belugas and narwhals), Physeteridae (the sperm whale), Kogiidae (the dwarf and pygmy sperm whale), and Ziphiidae (the beaked whales).

Whales are creatures of the open ocean; they feed, mate, give birth, suckle and raise their young at sea. So extreme is their adaptation to life underwater that they are unable to survive on land. Whales range in size from
the 2.6 metres (8.5 ft) and 135 kilograms (298 Ib) dwarf sperm whale to the 29.9 metres (98 ft) and 190 metric tons (210 short tons) blue whale, which is the largest creature that has ever lived. The sperm whale is the
largest toothed predator on earth. Several species exhibit sexual dimorphism, in that the females are larger than males. Baleen whales have no teeth; instead they have plates of baleen, a fringe-like structure used to expel
water while retaining the krill and plankton which they feed on. They use their throat pleats to expand the mouth to take in huge gulps of water. Balaenids have heads that can make up 40% of their body mass to take in
water. Toothed whales, on the other hand, have conical teeth adapted to catching fish or squid. Baleen whales have a well developed sense of "smell", whereas toothed whales have well-developed hearing - their hearing
that is adapted for both air and water, is so well developed that some can survive even if they are blind. Some species. such as sperm whales, are well adapted for diving to great depths to catch squid and other favoured
prey.

Whales have evolved from land-living mammals. As such whales must breathe air regularly, although they can remain submerged under water for long periods of time. Some species such as the sperm whale are able to
stay submerged for as much as 90 minutes.["! They have blowholes (modified nostrils) located on top of their heads, through which air is taken in and expelled. They are warm-blooded, and have a layer of fat, or blubber,
under the skin. With streamlined fusiform bodies and two limbs that are modified into flippers, whales can travel at up to 20 knots, though they are not as flexible or agile as seals. Whales produce a great variety of
vocalizations, notably the extended songs of the humpback whale. Although whales are widespread, most species prefer the colder waters of the Northern and Southern Hemispheres, and migrate to the equator to give
birth. Species such as humpbacks and blue whales are capable of travelling thousands of miles without feeding. Males typically mate with multiple females every year, but females only mate every two to three years. Calves
are typically born in the spring and summer months and females bear all the responsibility for raising them. Mothers of some species fast and nurse their young for one to two years.

Once relentlessly hunted for their products, whales are now protected by international law. The North Atlantic right whales nearly became extinct in the twentieth century, with a population low of 450, and the North Pacific
grey whale population is ranked Critically Endangered by the IUCN. Besides whaling, they also face threats from bycatch and marine pollution. The meat, blubber and baleen of whales have traditionally been used by
indigenous peoples of the Arctic. Whales have been depicted in various cultures worldwide, notably by the Inuit and the coastal peoples of Vietnam and Ghana, who sometimes hold whale funerals. Whales occasionally
feature in literature and film, as in the great white whale of Herman Melville's Moby Dick. Small whales, such as belugas, are sometimes kept in captivity and trained to perform tricks, but breeding success has been poor
and the animals often die within a few months of capture. Whale watching has become a form of tourism around the world.
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Image example of zero shot learning

Animals with
Attributes (AWA) 50 85
[Lampert et.al. CVPR'09] cls att

Caltech UCSD-Birds
(CUB) 200 312
[Wah et.al.’11] cls att

Input Embeddings 6(x): 1K-dim GoogleNet features
Output Embeddings ¢(y): att, w2v, glo,



Image example of zero shot learning

AWA CUB
w2v  bl.2 284
glo 58.8  24.2

att- 60.1 29.9
att+ 139 BH1.7

o Attributes & Wikipedia & WordNet are complementary



Google Translate - Zero shot Learning
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Google Translate - Zero shot Learning
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Pretrained models

https://modeldepot.io/

http://pretrained.ml/

https://keras.io/

https://github.com/Cadene/pretrained-models.pytorch

https://nlp.stanford.edu/projects/alove/

https://qithub.com/pumpikano/tf-dann



https://modeldepot.io/
http://pretrained.ml/
https://keras.io/
https://github.com/Cadene/pretrained-models.pytorch
https://nlp.stanford.edu/projects/glove/
https://github.com/pumpikano/tf-dann
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