
An	Introduction	to	
Reinforcement	Learning

Anand	Subramoney
anand [at]	igi.tugraz.at

Institute	for	Theoretical	Computer	Science,	TU	Graz
http://www.igi.tugraz.at/

Machine	Learning	Graz	Meetup
12th October	2017

Outline

• Introduction
• Value	estimation
• Q-learning
• Policy	gradient
• DQN
• A3C

What	is	Reinforcement	Learning?

• Learning	an	agent	while	interacting with	the	environment
• The	agent	receives	a	“reward”	for	each	action	it	takes
• The	goal	of	the	agent	is	to	maximize	the	reward	it	receives
• The	agent	is	not	told	what	the	”right”	action	is.	i.e.	it	is	not	supervised

Notation

• The	state	of	the	environment	is	𝑠" at	time	𝑡
• Examples	of	state:	the	(x,	y)	coordinates,	image	pixels	etc.

• At	each	time	step	𝑡,	the	agent	takes	action	𝑎" (knowing	𝑠")
• Examples	of	action:	Move	right/left/up/down,	acceleration	of	car	etc.

• Then	the	agent	gets	a	reward	𝑟"
• Could	be	0/1	or	points	in	the	game

• The	agent	plays	for	one	“episode”	
• Called	“episodic”	RL
• E.g.	one	game	until	it	wins/loses	etc.
• Non-episodic	also	possible

Notation

• Model:		𝒫''(
) = Pr	{𝑠"/0 = 𝑠1|𝑠" = 𝑠, 𝑎" = 𝑎}

• What	is	the	next	state	given	the	current	state	and	action	taken?
• The	environment	can	be	stochastic,	in	which	case	this	is	a	probability	
distribution

• Reward:		ℛ''(
) = 𝐸{𝑟"/0|𝑠" = 𝑠, 𝑎" = 𝑎, 𝑠"/0 = 𝑠1}

• Expected	value	of	reward	when	going	from	one	state	to	another	taking	a	
certain	action
• In	the	most	general	case,	the	reward	is	not	deterministic

Policy

• The	agent	has	a	certain	mapping	between	state	and	action
• This	is	called	the	policy of	the	agent
• Denoted	by	𝜋(𝑠, 𝑎)
• In	the	stochastic	case,	it’s	the	probability	distribution	over	actions	at	a	given	
state	𝜋 𝒔, 𝒂 = 	P(𝒂"|𝒔")

The	goal	of	reinforcement	learning

• Is	to	find	a	policy	that	maximizes	the	total	expected	reward	
• also	called	the	“return”

• In	an	episode
• 𝛾 is	called	the	“discounting	factor”

• Small	 𝛾 produces	shortsighted,	large	g far-sighted	policies.
• R	is	always	finite	if		𝛾 < 1 and	the	local	rewards	r	are	from	a		bounded	
set	of	numbers.

𝑅" = 𝑟"/0 + 𝛾𝑟"/Y + 𝛾Y𝑟"/Z + ⋯ = \𝛾]𝑟"/]/0

^

]_`

Example	environment

The	agent	receives	-0.001	
reward	every	step.	When	it	
reaches	the	goal	or	a	pit,	it	
obtains	rewards	of	+1.0	or	-1.0	
resp.	and	the	episode	is	
terminated.

The	goal	of	reinforcement	learning

• How	can	the	agent	quantify	the	desirability	of	intermediate	states	
(where	no,	or	no	relevant	reward	is	given)?

• The	difficulty	is,	that	the	desirability	of	intermediate	states	depends	
on:
• The	concrete	selection	of	actions	AFTER	being	in	such	an	intermediate	state,
• AND	on	the	desirability	of	subsequent	intermediate	states.

• The	value	function	allows	us	to	do	this

The	value	function

• Defined	as:
• 𝑉b 𝑠 = 𝐸b 𝑅" 𝑠" = 𝑠 = 𝐸b{∑ 𝛾]𝑟"/]/0|𝑠" = 𝑠^

]_` }

• The	value	of	a	state	s	is	the	expected	return	starting	from	that	state	s	
and	following	policy	𝜋
• Satisfies	the	Bellman	equations

Bellman equation for Vp :

Vp (s) = p (s,a) Ps ¢ s
a Rs ¢ s

a + gV p(¢ s)[]
¢ s
å

a
å

– a system of S simultaneous linear equations

Note	that	it’s	a	recursive	
formulation	of	the	value	
function

Example	value	function

Calculating	the	value	function

• If	the	model	𝒫''(
) and	reward	ℛ''(

) are	known,	calculate	𝑉b 𝑠 using	
iterative	policy	evaluation.

http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Why	value	function?

• There exists	a	natural		partial	order	on	all	possible	policies:

𝜋1 ≥ 𝜋	𝑖𝑓	𝑎𝑛𝑑	𝑜𝑛𝑙𝑦	𝑖𝑓	𝑉b(𝑠 ≥ 𝑉b 𝑠 	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑠 ∈ 𝑆

• Definition: A	policy 𝜋1 is	called	optimal	if 𝜋1 ≥ 𝜋	for	all	policies 𝜋

• Existence	of	at	least	one	optimal	policy	is	guaranteed,	and	they	satisfy	
Bellman	Optimality	equations.

The	action-value	function

• Defined	as:
• 𝑄b 𝑠, 𝑎 = 𝐸b 𝑅" 𝑠" = 𝑠, 𝑎" = 𝑎 = 𝐸b{∑ 𝛾]𝑟"/]/0|𝑠" = 𝑠^

]_` , 𝑎" = 𝑎}

• This	is	called	the	“Q	function”
• The	value	of	taking	action	𝑎	in	state	𝑠 following	policy	𝜋 thereafter
• Also	satisfies	the	Bellman	equations

 Qp (s,a) = Ep rt +1 + gV p(st +1) st = s, at = a{ }
= Ps ¢ s

a

¢ s
å Rs ¢ s

a +g Vp (¢ s)[]

Finding	an	optimal	policy

• Define	a	new	policy	𝜋1 that	is	greedy	with	respect	to	𝑉b

• For	all	states	𝑠:	𝜋1 = 𝑎𝑟𝑔𝑚𝑎𝑥)𝑄b 𝑠, 𝑎
• This	policy	satisfies	𝑄b 𝑠, 𝜋1 𝑠 ≥ 𝑉b 𝑠
• Can	be	shown	that:
• 𝜋1 ≥ 𝜋 for	𝛾 < 1
• Eventually	converges	to	an	optimal	policy

• This	works	only	if	𝑉b 𝑠 can	be	calculated

Other	ways	to	calculate	V/Q

• Monte-carlo policy	evaluation
• Sample	one	episode	and	update	the	value	function	for	each	state
• 𝑉 𝑠" ⟵ 𝑉 𝑠" + 𝛼 𝑅" − 𝑉 𝑠"
• Asymptotically	converges	to	the	true	value	function

• Temporal	Difference	(TD)	Learning
• For	each	step	of	each	episode:
• Take	action	𝑎,	observe	reward	𝑟"/0and	next	state	𝑠"/0
• 𝑉 𝑠" ⟵ 𝑉 𝑠" + 𝛼(𝑟"/0 + 𝛾𝑉 𝑠"/0 − 𝑉 𝑠")

Temporal	Difference

Learning	Q-function	(SARSA)

• Q	can	be	used	to	define	a	policy	
• take	action	a = 	𝑎𝑟𝑔𝑚𝑎𝑥)𝑄(𝑠, 𝑎) at	every	state	with	probability	1 − 𝜖
• With	probability	𝜖 take	a	random	action	(exploration)

• Use	temporal	difference	learning	to	learn	Q-function
• For	each	step	of	each	episode:
• Take	action	𝑎,	observe	reward	𝑟"/0and	next	state	𝑠"/0
• 𝑄 𝑠", 𝑎" ⟵ 𝑄 𝑠", 𝑎" + 𝛼(𝑟"/0 + 𝛾𝑄 𝑠"/0, 𝑎"/0	 		− 𝑄 𝑠", 𝑎")

• 𝑎"/0for	learning	can	be	used	from	this	policy
• Called	SARSA

Q-learning

• Use	temporal	difference	learning	to	learn	Q-function
• For	each	step	of	each	episode:
• Take	action	𝑎,	observe	reward	𝑟"/0and	next	state	𝑠"/0
• 𝑄 𝑠", 𝑎" ⟵ 𝑄 𝑠", 𝑎" + 𝛼(𝑟"/0 + 𝛾max) 𝑄 𝑠"/0, 𝑎	 		− 𝑄 𝑠", 𝑎")

• Q-learning	requires	for	convergence	to	the	optimal	policy	that	
rewards	are	sampled	for	each	pair	(s,	a)	infinitely	often.	

• http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Function	approximation

• The	Q-function	can	be	approximated	with	a	neural	network	(or	any	
other	function	approximator)

• The	targets	for	the	network	would	be	
𝑟"/0 + 𝛾max) 𝑄 𝑠"/0, 𝑎	

• Train	the	neural	network	with	backpropagation

The	goal	of	reinforcement	learning	(repeated)

• Is	to	find	a	policy	that	maximizes	the	total	expected	reward	
• also	called	the	“return”

• 𝛾 is	called	the	“discounting	factor”

• Small	 𝛾 produces	shortsighted,	large	g far-sighted	policies.
• R	is	always	finite	if		𝛾 < 1 and	the	local	rewards	r	are	from	a		
bounded	set	of	numbers.

𝑅" = 𝑟"/0 + 𝛾𝑟"/Y + 𝛾Y𝑟"/Z + ⋯ = \𝛾]𝑟"/]/0

^

]_`

Policy	Gradient

• Why	not	learn	the	policy	directly?
• Define	cost	function	as	the	total	expected	reward:

𝐽 𝜃 = 𝐸 \𝑎]𝑟]

}

]_`

= 𝐸{𝑟 𝜏 }

• 𝑎] is	some	discounting	factor
• 𝑟] is	reward	at	step	k
• 𝜏 is	a	trajectory	and	𝑟 𝜏 =	∑ 𝑎]𝑟]}

]_`

• Learn	this	using	gradient	ascent:

𝜃"/0 = 𝜃" + 𝜂𝛻�𝐽 𝜃

• Problems?
• Cannot	calculate	gradient	of	J

Policy	Gradient

• It	is	possible	to	empirically	estimate	the	gradient	(Williams	1992)

𝛻�𝐽 𝜃 = 𝐸{𝛻� log 𝑝�(𝜏)(𝑟 𝜏 − 𝑏)}

=\𝛻� log 𝜋�(𝑎"|𝑠")
�

"_`

	(𝑅" − 𝑏)

• Uses	the	log-likelihood	trick	(or	REINFORCE	trick)
• Baseline	is	used	to	reduce	variance	of	gradient	estimator
• Baseline	doesn’t	introduce	bias
• DEMO

DQN	and	A3C

DQN

• Mnih,	V.	et	al. Human-level	control	through	deep	reinforcement	
learning.	Nature 518, 529–533	(2015).
• Uses	a	deep	neural	network	to	learn	the	Q-values

DQN:	Two	key	ideas

• Episode	replay:
• Store	earlier	steps	and	apply	Q-learning	updates	in	random	batches	from	this	
memory

• Update	policy	network	only	once	every	C	steps

DQN

A3C

• Mnih,	V.	et	al. Asynchronous	Methods	for	Deep	Reinforcement	
Learning.	arXiv:1602.01783	[cs] (2016).

• A3C:	Asynchronous	Advantage	Actor	Critic
• Uses	policy	gradient	with	a	baseline	that	is	the	value	function

𝛻�𝐽 𝜃 =\𝛻� log 𝜋�(𝑎"|𝑠")
�

"_`

	(𝑅" − 𝑉(𝑠"))

AdvantageActor

Critic

A3C

Resources

• Book:	Reinforcement	Learning	An	Introduction,	Richard	Sutton	and	Andrew	Barto
• Available	online	on	Andrew	Barto’s website:	
http://www.incompleteideas.net/sutton/book/the-book-1st.html

• Course:	Autonomously	Learning	Systems	IGI	TU	Graz
• 2016	website:	http://www.igi.tugraz.at/lehre/Autonomously_learning_systems/WS16/
• Next	course	in	2018
• Lecture	slides	available	there

• DQN:	https://deepmind.com/research/dqn/
• OpenAI Gym:	https://gym.openai.com/envs
• Deep	Reinforcement	Learning:	Pong	from	Pixels	(Andrej	Karpathy):	
https://karpathy.github.io/2016/05/31/rl/
• Book:	Deep	Learning,	Ian	Goodfellow,	Yoshua Bengio and	Aaron	Courville

• Available	online:	http://www.deeplearningbook.org
• RLPy:	https://rlpy.readthedocs.io/en/latest/ (python	2.7	only)

