Machine Learning
Graz

TU

Grazm

Graz University of Technology

An Introduction to
Reinforcement Learning

Anand Subramoney
anand [at] igi.tugraz.at
Institute for Theoretical Computer Science, TU Graz

http://www.igi.tugraz.at/

Machine Learning Graz Meetup
12t October 2017

Outline

* Introduction
* Value estimation
* Q-learning

* Policy gradient
 DON
* A3C

What is Reinforcement Learning?

* Learning an agent while interacting with the environment

T
T
T

ne agent receives a “reward” for each action it takes
ne goal of the agent is to maximize the reward it receives

ne agent is not told what the “right” action is. i.e. it is not supervised

Notation

* The state of the environment is s; attime t
 Examples of state: the (x, y) coordinates, image pixels etc.

* At each time step t, the agent takes action a; (knowing s;)
e Examples of action: Move right/left/up/down, acceleration of car etc.

* Then the agent gets a reward 1y
e Could be 0/1 or points in the game

* The agent plays for one “episode”
* Called “episodic” RL Statﬁ
* E.g. one game until it wins/loses etc.
* Non-episodic also possible

reward action
2
! a,

e
84

Environment

Notation

. a __ ! — —
* Model: P_s = Pr{s;y; =s'[s; =s,a; = a}
* What is the next state given the current state and action taken?

* The environment can be stochastic, in which case this is a probability
distribution

* Reward: R, = E{ry41|s: =5,a; = a,S¢41 = 5’}
* Expected value of reward when going from one state to another taking a
certain action

* In the most general case, the reward is not deterministic

Policy

* The agent has a certain mapping between state and action
* This is called the policy of the agent

* Denoted by 7 (s, a)

* In the stochastic case, it’s the probability distribution over actions at a given
state m(s,a) = P(a;|s;)

The goal of reinforcement learning

* |s to find a policy that maximizes the total expected reward
* also called the “return”

(00]

Ry =Ty + YTeyp +V?Tigz + o0 = fr

t t+1 T VTt42 TV Tt43 YV Tt+k+1
k=0

* In an episode
* v is called the “discounting factor”

* Small y produces shortsighted, large y far-sighted policies.

* Ris always finite if y < 1 and the local rewards r are from a bounded
set of numbers.

Example environment

The agent receives -0.001
reward every step. When it
reaches the goal or a pit, it
obtains rewards of +1.0 or -1.0
resp. and the episode is
terminated.

The goal of reinforcement learning

* How can the agent quantify the desirability of intermediate states
(where no, or no relevant reward is given)?

* The difficulty is, that the desirability of intermediate states depends
on:

* The concrete selection of actions AFTER being in such an intermediate state,
 AND on the desirability of subsequent intermediate states.

* The value function allows us to do this

The value function

* Defined as:
* V(s) = Ex{R¢|s¢ = s} = Ex{Xp-0 Y “Tesks1l5e = 53

* The value of a state s is the expected return starting from that state s
and following policy

e Satisfies the Bellman equations

Bellman equation for V" : Note that it’s a recursive
formulation of the value
Vi(s)= Z”(S’a)z E, [Rfs +yV (S')] function

— a system of [S| simultaneous linear equations

Example value function

Calculating the value function

* If the model SD:‘S, and reward R?S, are known, calculate V™ (s) using
iterative policy evaluation.

Input 7, the policy to be evaluated
Initialize V' (s) =0, for all s € ST
Repeat
A «— 0
For each s € S:
v «— V(s)
V(S> — D ﬂ-(87 a’) D s’ .gs' [R(szs’ + ’YV(S,)]
A — max(A, |[v — V(s)])
until A < 0 (a small positive number)
Output V = V7™

http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.html

Why value function?

* There exists a natural partial order on all possible policies:
" " ,
n' >mif and only if V* (s) =2 V™(s) foralls € S
* Definition: A policy ' is called optimal if #’ = m for all policies

* Existence of at least one optimal policy is guaranteed, and they satisfy
Bellman Optimality equations.

The action-value function

e Defined as:

* Q"(s,a) = Ex{R¢|s = s,a; = a} = En{Z}?:o Vkrt+k+1 St =S,a; = aj}

* This is called the “Q function”

* The value of taking action a in state s following policy ™ thereafter
* Also satisfies the Bellman equations

Q" (s,a)=E_ {i;+1 +yV7*(s,,,)| S, =S,a = a}
=> Pu|RG +rVisH]

Finding an optimal policy

 Define a new policy i’ that is greedy with respect to V'™
* For all states s: ' = argmax,Q™ (s, a)
* This policy satisfies Q”(s, n’(s)) > V7(s)

* Can be shown that:
e 1 >mfory <1
* Eventually converges to an optimal policy

* This works only if V™(s) can be calculated

Other ways to calculate V/Q

* Monte-carlo policy evaluation
« Sample one episode and update the value function for each state
* V(sg) «—V(se) + “(Rt - V(St))
* Asymptotically converges to the true value function

* Temporal Difference (TD) Learning
* For each step of each episode:
* Take action a, observe reward 73,1and next state s4,4
* V(st) «— V(sp) + a(rps1 + ¥V (Se41) —V(se))

\)
|

Temporal Difference

Learning Q-function (SARSA)

* Q can be used to define a policy
» take actiona = argmax,Q(s,a) at every state with probability 1 — €
* With probability € take a random action (exploration)

* Use temporal difference learning to learn Q-function
* For each step of each episode:
* Take action a, observe reward 1, ;and next state s;,4

* Q(sp,ar) «— Q(sp,ap) + a(reyr T ¥Q(Ses1,ary1) — Q(st, ag))

* a;.1for learning can be used from this policy
* Called SARSA

Q-learning

* Use temporal difference learning to learn Q-function
* For each step of each episode:
* Take action a, observe reward 7y, 1and next state 4,4

* Q(sp,ar) «— Q(sp,ae) + a(rep +y max Q (se+1,a) — Q(sg, ar))

* Q-learning requires for convergence to the optimal policy that
rewards are sampled for each pair (s, a) infinitely often.

e http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld td.html

Function approximation

* The Q-function can be approximated with a neural network (or any
other function approximator)

* The targets for the network would be
Te+1 TV max Q (S¢41,0)

* Train the neural network with backpropagation

The goal of reinforcement learning (repeated)

* Is to find a policy that maximizes the total expected reward
* also called the “return”

(00]

Ry =Tiyq + YTeqn + VTpyg + - = Ky

t t+1 T VTt42 TV Tt43 YV Tt+k+1
k=0

* v is called the “discounting factor”

* Small y produces shortsighted, large y far-sighted policies.

* Ris always finite if ¥ < 1 and the local rewards r are from a
bounded set of numbers.

Policy Gradient

Why not learn the policy directly?
Define cost function as the total expected reward:

H

J(6) =E {Z akrk} = E{r()}

k=0
* ay is some discounting factor

* 713 isreward at step k
* tisatrajectory and (1) = Y.K_, ar1y

Learn this using gradient ascent:
Ory1 = 0 + V] (6)

Problems?
e Cannot calculate gradient of J

Policy Gradient

It is possible to empirically estimate the gradient (Williams 1992)

Ve (0) = E{Vg logpe(r)(r(7) — b)}
T
=) Vylogmg(aclse) (R —b)
t=0

Uses the log-likelihood trick (or REINFORCE trick)
Baseline is used to reduce variance of gradient estimator

Baseline doesn’t introduce bias
DEMO

DQN and A3C

DQN

* Mnih, V. et al. Human-level control through deep reinforcement
learning. Nature 518, 529-533 (2015).

e Uses a deep neural network to learn the Q-values

Convolution Convolution Fully connected Fully connected
v v v v

0oooooo doooooo doooooo Ooooooo

DQN: Two key ideas

* Episode replay:
 Store earlier steps and apply Q-learning updates in random batches from this
memory

* Update policy network only once every C steps

Li(0;) =E(sa,,5)~u(D)

2
(rwmgx O(s',d’50;7) — Q(s.a; 9,-))]

Video Pinball]
Boxing |
Breakout
Star Gunner |
Robotank |
Atlantis |
Crazy Climber
Gopher |
Demon Attack |
Name This Game |
Krull |
Assault
Road Runner |
Kangaroo |
James Bond
Tennis |
Pong :
Space Invaders
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |
Time Pilot
Enduro |
Fishing Derby |
Up and Down |
Ice Hockey |
Q'bert |
H.E.R.O.
Asterix |
Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist |
River Raid |
Zaxxon |
Amidar |
Alien |
Venture |
Seaquest
Double Dunk |
Bowling |
Ms. Pac-Man |
Asteroids |
Frostbite |
it oo
Private Eye | :
Montezuma's Revenge : | 0%
T T T T T
100 200 300 400 500 600

|

At human-level or above

Below human-level

=~

~_
~—

-
o -

1
00 4,500%

o —

A3C

* Mnih, V. et al. Asynchronous Methods for Deep Reinforcement
Learning. arXiv:1602.01783 [cs] (2016).

* A3C: Asynchronous Advantage Actor Critic
* Uses policy gradient with a baseline that is the value function

. Critic
Vo] (0) = z Ve logmg(atls:) (R —V(st))
t=0 |

)
Y \ Y)

Actor Advantage

Game

Alien

Amidar
Assault
Asterix
Asteroids
Atlantis

Bank Heist
Battle Zone
Beam Rider
Berzerk
Bowling
Boxing
Breakout
Centipede
Chopper Comman
Crazy Climber
Defender
Demon Attack
Double Dunk
Enduro
Fishing Derby
Freeway
Frostbite
Gopher
Gravitar
H.ER.O.

Ice Hockey
James Bond
Kangaroo
Krull

Kung-Fu Master
Montezuma’s Revenge
Ms. Pacman
Name This Game
Phoenix

Pit Fall

Pong

Private Eye
Q*Bert

River Raid
Road Runner
Robotank
Seaquest
Skiing

Solaris

Space Invaders
Star Gunner
Surround
Tennis

Time Pilot
Tutankham

Up and Down
Venture

Video Pinball
Wizard of Wor
Yars Revenge
Zaxxon

DQN
5702
1334

33323
1245
697.1

76108.0
176.3

17560.0

86724

412
25.8
303.9
3773.1
3046.0
50992.0

12835.2
-21.6
475.6
-2.3
25.8
1574
2731.8
216.5
12952.5
-3.8
348.5
2696.0
3864.0
11875.0
50.0
763.5
5439.9

16.2
2982
4589.8
4065.3
9264.0
58.5
2793.9

1449.7
34081.0

-2.3
5640.0
324
33113
54.0
20228.1
246.0

831.0

Gorila
8135
189.2
1195.8
33247
933.6
629166.5
3994
19938.0

3822.1

54.0
74.2
313.0
6296.9
3191.8
65451.0

14880.1
-11.3
71.0
4.6

10.2
426.6
4373.0
538.4
8963.4
-1.7
444.0
1431.0
6363.1
20620.0
84.0
1263.0
9238.5

16.7
2598.6
7089.8
5310.3

43079.8

61.8

10145.9

1183.3
14919.2

-0.7
8267.8
118.5
8747.7
5234
112093.4
10431.0

6159.4

Double
10334
169.1
6060.8
16837.0
1193.2
319688.0
886.0
24740.0
17417.2
1011.1
69.6
735
368.9
3853.5
3495.0
113782.0
27510.0
69803.4
-0.3
1216.6
32

28.8
1448.1
15253.0
200.5
14892.5
-2.5
573.0
11204.0
6796.1
30207.0
42.0
12413
8960.3
12366.5
-186.7
19.1
-575.5
11020.8
10838.4
43156.0
59.1
14498.0
-11490.4
810.0
2628.7
58365.0
19

-7.8
6608.0
922
19086.9
21.0
367823.7
6201.0
6270.6
8593.0

Dueling
1486.5
172.7
3994.8
15840.0
2035.4
445360.0
1129.3
31320.0
14591.3
910.6
65.7
77.3
411.6
4881.0
3784.0
124566.0
33996.0
56322.8
-0.8
20774
-4.1

0.2
23324
20051.4
297.0
15207.9
-1.3
835.5
10334.0
8051.6
24288.0
220
2250.6
11185.1
20410.5
-46.9
18.8
292.6
14175.8
16569.4
58549.0
62.0
37361.6
-11928.0
1768.4
5993.1
90804.0
4.0

44
6601.0
48.0
24759.2
200.0
110976.2
7054.0
25976.5
10164.0

Prioritized
900.5
2184

7748.5
31907.5
1654.0
593642.0
816.8
29100.0
26172.7
1165.6
65.8
68.6
371.6
3421.9
6604.0
131086.0
21093.5
73185.8
2.7
1884.4
9.2

279
2930.2
57783.8
218.0
20506.4
-1.0
35115
10241.0
7406.5
312440
13.0
1824.6
11836.1
27430.1
-14.8
18.9
179.0
11277.0
18184.4
56990.0
554
39096.7
-10852.8
2238.2
9063.0
51959.0
-0.9
2.0
7448.0
33.6
29443.7
244.0
374886.9
7451.0
5965.1
9501.0

A3C FF, 1 day
182.1
283.9

3746.1
6723.0
3009.4
772392.0
946.0
11340.0
132359
1433.4
36.2
337
551.6
3306.5
4669.0
101624.0
36242.5
84997.5
0.1
822
13.6

0.1
180.1
8442.8
269.5
28765.8
4.7
3515
106.0
8066.6
3046.0
53.0
594.4
5614.0
28181.8
-123.0
114
194.4
137523
10001.2
31769.0
23
2300.2
-13700.0
1884.8
22147
64393.0
9.6
-102
5825.0
26.1
545254
19.0
185852.6
5278.0
7270.8
2659.0

A3CFF
5184
263.9

5474.9
22140.5
4474.5

911091.0

970.1
12950.0
22707.9

817.9

35.1

59.8
681.9
3755.8
7021.0
112646.0
56533.0
113308.4
-0.1
-82.5
18.8

0.1

190.5
10022.8

303.5
32464.1

-2.8
541.0
94.0
5560.0
28819.0
67.0

653.7
10476.1
52894.1

-78.5

5.6

206.9
15148.8
12201.8
34216.0

32.8
23554
-10911.1
1956.0
15730.5
138218.0
9.7

-6.3
12679.0

156.3

74705.7
23.0
331628.1
17244.0
7157.5
24622.0

A3CLSTM
945.3
173.0

14497.9
17244.5
5093.1
875822.0
932.8
20760.0
24622.2
862.2
41.8

373
766.8
1997.0
10150.0
138518.0
233021.5
115201.9
0.1

-82.5
22.6

0.1

197.6
17106.8
320.0
28889.5
-1.7
613.0
125.0
5911.4
40835.0
41.0
850.7
12093.7
74786.7
-135.7
10.7
421.1
21307.5
6591.9
73949.0
2.6
1326.1
-14863.8
1936.4
23846.0
164766.0
-8.3

-6.4
27202.0
1442
105728.7
25.0
470310.5
18082.0
5615.5
23519.0

Resources

* Book: Reinforcement Learning An Introduction, Richard Sutton and Andrew Barto

e Available online on Andrew Barto’s website:
http://www.incompleteideas.net/sutton/book/the-book-1st.html

* Course: Autonomously Learning Systems IGI TU Graz
* 2016 website: http://www.igi.tugraz.at/lehre/Autonomously learning systems/WS16/
* Next course in 2018
* Lecture slides available there

 DQN: https://deepmind.com/research/dgn/
* OpenAl Gym: https://gym.openai.com/envs

* Deep Reinforcement Learning: Pong from Pixels (Andrej Karpathy):
https://karpathy.github.io/2016/05/31/rl/

* Book: Deep Learning, lan Goodfellow, Yoshua Bengio and Aaron Courville
* Available online: http://www.deeplearningbook.org

* RLPy: https://rlpy.readthedocs.io/en/latest/ (python 2.7 only)

