

An Introduction to Reinforcement Learning

Anand Subramoney

anand [at] igi.tugraz.at

Institute for Theoretical Computer Science, TU Graz

http://www.igi.tugraz.at/

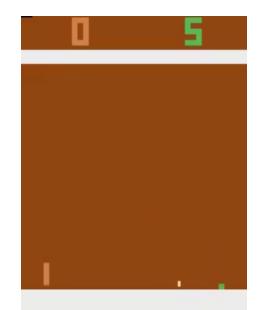
Machine Learning Graz Meetup 12th October 2017

Outline

- Introduction
- Value estimation
- Q-learning
- Policy gradient
- DQN
- A3C

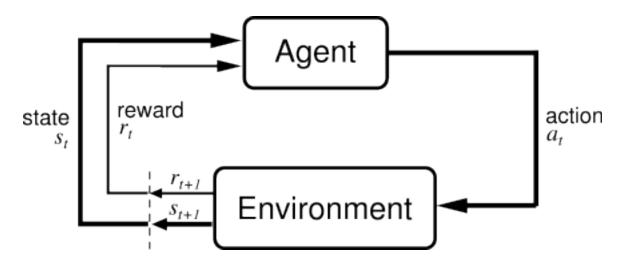
What is Reinforcement Learning?

- Learning an agent while **interacting** with the environment
- The agent receives a "**reward**" for each action it takes
- The goal of the agent is to **maximize the reward** it receives
- The agent is not told what the "right" action is. i.e. it is not supervised



Notation

- The state of the environment is s_t at time t
 - Examples of state: the (x, y) coordinates, image pixels etc.
- At each time step t, the agent takes action a_t (knowing s_t)
 - Examples of action: Move right/left/up/down, acceleration of car etc.
- Then the agent gets a reward r_t
 - Could be 0/1 or points in the game
- The agent plays for one "episode"
 - Called "episodic" RL
 - E.g. one game until it wins/loses etc.
 - Non-episodic also possible



Notation

- Model: $\mathcal{P}_{ss'}^{a} = \Pr\{s_{t+1} = s' | s_t = s, a_t = a\}$
 - What is the next state given the current state and action taken?
 - The environment can be stochastic, in which case this is a probability distribution
- Reward: $\mathcal{R}_{ss'}^a = E\{r_{t+1}|s_t = s, a_t = a, s_{t+1} = s'\}$
 - Expected value of reward when going from one state to another taking a certain action
 - In the most general case, the reward is not deterministic

Policy

- The agent has a certain mapping between state and action
- This is called the **policy** of the agent
- Denoted by $\pi(s, a)$
 - In the stochastic case, it's the probability distribution over actions at a given state $\pi(s, a) = P(a_t | s_t)$

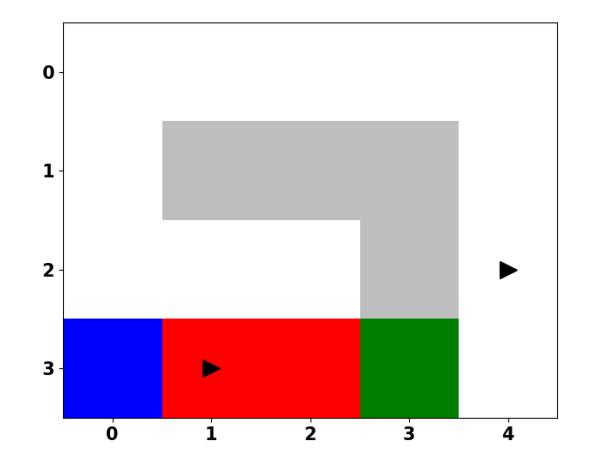
The goal of reinforcement learning

- Is to find a policy that maximizes the total expected reward
 - also called the "return"

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

- In an episode
- γ is called the "discounting factor"
- Small γ produces shortsighted, large γ far-sighted policies.
- R is always finite if $\gamma < 1$ and the local rewards r are from a bounded set of numbers.

Example environment



The agent receives -0.001 reward every step. When it reaches the goal or a pit, it obtains rewards of +1.0 or -1.0 resp. and the episode is terminated.

The goal of reinforcement learning

- How can the agent quantify the desirability of intermediate states (where no, or no relevant reward is given)?
- The difficulty is, that the desirability of intermediate states depends on:
 - The concrete selection of actions AFTER being in such an intermediate state,
 - AND on the desirability of subsequent intermediate states.
- The value function allows us to do this

The value function

• Defined as:

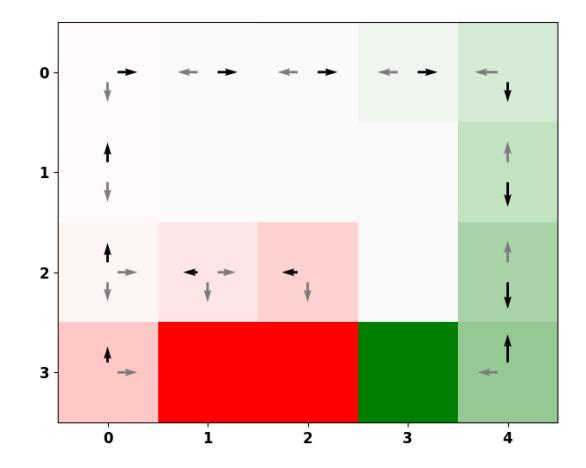
•
$$V^{\pi}(s) = E_{\pi}\{R_t | s_t = s\} = E_{\pi}\{\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s\}$$

- The value of a state s is the expected return starting from that state s and following policy π
- Satisfies the Bellman equations

Bellman equation for V^{π} : $V^{\pi}(s) = \sum_{a} \pi(s,a) \sum_{s'} P^{a}_{ss'} \left[R^{a}_{ss'} + \gamma V^{\pi}(s') \right]$ Note that it's a recursive formulation of the value function

- a system of |S| simultaneous linear equations

Example value function



Calculating the value function

• If the model $\mathcal{P}_{ss'}^{a}$ and reward $\mathcal{R}_{ss'}^{a}$ are known, calculate $V^{\pi}(s)$ using iterative policy evaluation.

```
Input \pi, the policy to be evaluated
Initialize V(s) = 0, for all s \in S^+
Repeat
    \Delta \leftarrow 0
     For each s \in \mathcal{S}:
          v \leftarrow V(s)
          V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}^{a}_{ss'} [\mathcal{R}^{a}_{ss'} + \gamma V(s')]
          \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output V \approx V^{\pi}
```

http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Why value function?

• There exists a natural partial order on all possible policies:

$$\pi' \ge \pi$$
 if and only if $V^{\pi'}(s) \ge V^{\pi}(s)$ for all $s \in S$

- **Definition:** A policy π' is called optimal if $\pi' \ge \pi$ for all policies π
- Existence of at least one optimal policy is guaranteed, and they satisfy Bellman Optimality equations.

The action-value function

• Defined as:

•
$$Q^{\pi}(s,a) = E_{\pi}\{R_t | s_t = s, a_t = a\} = E_{\pi}\{\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a\}$$

- This is called the "Q function"
- The value of taking action a in state s following policy π thereafter
- Also satisfies the Bellman equations

$$Q^{\pi}(s,a) = E_{\pi} \left\{ r_{t+1} + \gamma V^{\pi}(s_{t+1}) \middle| s_{t} = s, a_{t} = a \right\}$$
$$= \sum_{s'} P^{a}_{ss'} \left[R^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

Finding an optimal policy

- Define a new policy π' that is greedy with respect to V^{π}
- For all states $s: \pi' = argmax_a Q^{\pi}(s, a)$
- This policy satisfies $Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s)$
- Can be shown that:
 - $\pi' \ge \pi$ for $\gamma < 1$
 - Eventually converges to an optimal policy
- This works only if $V^{\pi}(s)$ can be calculated

Other ways to calculate V/Q

- Monte-carlo policy evaluation
 - Sample one episode and update the value function for each state
 - $V(s_t) \leftarrow V(s_t) + \alpha (R_t V(s_t))$
 - Asymptotically converges to the true value function
- Temporal Difference (TD) Learning
 - For each step of each episode:
 - Take action a, observe reward r_{t+1} and next state s_{t+1}
 - $V(s_t) \leftarrow V(s_t) + \alpha(r_{t+1} + \gamma V(s_{t+1}) V(s_t))$

Learning Q-function (SARSA)

- Q can be used to define a policy
 - take action $a = argmax_a Q(s, a)$ at every state with probability 1ϵ
 - With probability ϵ take a random action (exploration)
- Use temporal difference learning to learn Q-function
 - For each step of each episode:
 - Take action a, observe reward r_{t+1} and next state s_{t+1}
 - $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$
- a_{t+1} for learning can be used from this policy
- Called SARSA

Q-learning

- Use temporal difference learning to learn Q-function
 - For each step of each episode:
 - Take action a, observe reward r_{t+1} and next state s_{t+1}

•
$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t))$$

- Q-learning requires for convergence to the optimal policy that rewards are sampled for each pair (s, a) infinitely often.
- <u>http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html</u>

Function approximation

- The Q-function can be approximated with a neural network (or any other function approximator)
- The targets for the network would be $r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a)$
- Train the neural network with backpropagation

The goal of reinforcement learning (repeated)

- Is to find a policy that maximizes the total expected reward
 - also called the "return"

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

- γ is called the "discounting factor"
- Small γ produces shortsighted, large γ far-sighted policies.
- R is always finite if $\gamma < 1$ and the local rewards r are from a bounded set of numbers.

Policy Gradient

- Why not learn the policy directly?
- Define cost function as the total expected reward:

$$J(\theta) = E\left\{\sum_{k=0}^{H} a_k r_k\right\} = E\{r(\tau)\}$$

- a_k is some discounting factor
- r_k is reward at step k
- τ is a trajectory and $r(\tau) = \sum_{k=0}^{H} a_k r_k$
- Learn this using gradient ascent:

$$\theta_{t+1} = \theta_t + \eta \nabla_\theta J(\theta)$$

- Problems?
 - Cannot calculate gradient of J

Policy Gradient

• It is possible to empirically estimate the gradient (Williams 1992)

$$\nabla_{\theta} J(\theta) = E\{\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau) - b)\}$$

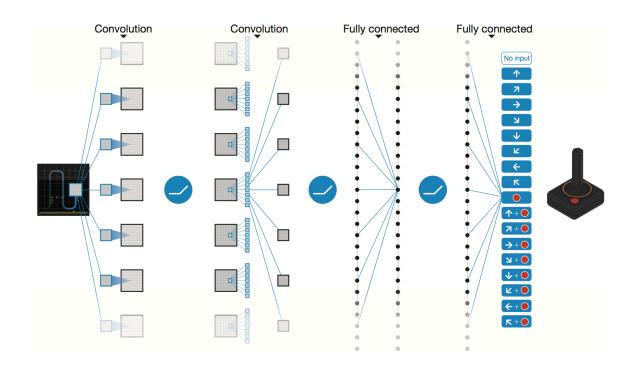
$$= \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \ (R_t - b)$$

- Uses the log-likelihood trick (or REINFORCE trick)
- Baseline is used to reduce variance of gradient estimator
- Baseline doesn't introduce bias
- DEMO

DQN and A3C

DQN

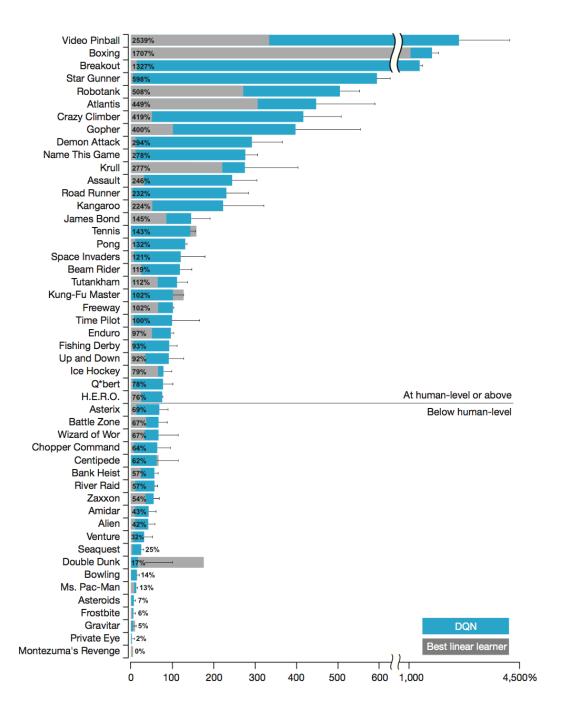
- Mnih, V. *et al.* Human-level control through deep reinforcement learning. *Nature* **518**, 529–533 (2015).
- Uses a deep neural network to learn the Q-values



DQN: Two key ideas

- Episode replay:
 - Store earlier steps and apply Q-learning updates in random batches from this memory
- Update policy network only once every C steps

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$



• Mnih, V. *et al.* Asynchronous Methods for Deep Reinforcement Learning. *arXiv:1602.01783 [cs]* (2016).

- A3C: Asynchronous Advantage Actor Critic
- Uses policy gradient with a baseline that is the value function

$$\nabla_{\theta} J(\theta) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) (R_t - V(s_t))$$
Actor Advantage

A3C

Game	DQN	Gorila	Double	Dueling	Prioritized	A3C FF, 1 day	A3C FF	A3C LSTM
Alien	570.2	813.5	1033.4	1486.5	900.5	182.1	518.4	945.3
Amidar	133.4	189.2	169.1	172.7	218.4	283.9	263.9	173.0
Assault	3332.3	1195.8	6060.8	3994.8	7748.5	3746.1	5474.9	14497.9
Asterix	124.5	3324.7	16837.0	15840.0	31907.5	6723.0	22140.5	17244.5
Asteroids	697.1	933.6	1193.2	2035.4	1654.0	3009.4	4474.5	5093.1
Atlantis	76108.0	629166.5	319688.0	445360.0	593642.0	772392.0	911091.0	875822.0
Bank Heist	176.3	399.4	886.0	1129.3	816.8	946.0	970.1	932.8
Battle Zone	17560.0	19938.0	24740.0	31320.0	29100.0	11340.0	12950.0	20760.0
Beam Rider	8672.4	3822.1	17417.2	14591.3	26172.7	13235.9	22707.9	24622.2
Berzerk			1011.1	910.6	1165.6	1433.4	817.9	862.2
Bowling	41.2	54.0	69.6	65.7	65.8	36.2	35.1	41.8
Boxing	25.8	74.2	73.5	77.3	68.6	33.7	59.8	37.3
Breakout	303.9	313.0	368.9	411.6	371.6	551.6	681.9	766.8
Centipede	3773.1	6296.9	3853.5	4881.0	3421.9	3306.5	3755.8	1997.0
Chopper Comman	3046.0	3191.8	3495.0	3784.0	6604.0	4669.0	7021.0	10150.0
Crazy Climber	50992.0	65451.0	113782.0	124566.0	131086.0	101624.0	112646.0	138518.0
Defender			27510.0	33996.0	21093.5	36242.5	56533.0	233021.5
Demon Attack	12835.2	14880.1	69803.4	56322.8	73185.8	84997.5	113308.4	115201.9
Double Dunk	-21.6	-11.3	-0.3	-0.8	2.7	0.1	-0.1	0.1
Enduro	475.6	71.0	1216.6	2077.4	1884.4	-82.2	-82.5	-82.5
Fishing Derby	-2.3	4.6	3.2	-4.1	9.2	13.6	18.8	22.6
Freeway	25.8	10.2	28.8	0.2	27.9	0.1	0.1	0.1
Frostbite	157.4	426.6	1448.1	2332.4	2930.2	180.1	190.5	197.6
Gopher	2731.8	4373.0	15253.0	20051.4	57783.8	8442.8	10022.8	17106.8
Gravitar	216.5	538.4	200.5	297.0	218.0	269.5	303.5	320.0
H.E.R.O.	12952.5	8963.4	14892.5	15207.9	20506.4	28765.8	32464.1	28889.5
Ice Hockey	-3.8	-1.7	-2.5	-1.3	-1.0	-4.7	-2.8	-1.7
James Bond	348.5	444.0	573.0	835.5	3511.5	351.5	541.0	613.0
Kangaroo	2696.0	1431.0	11204.0	10334.0	10241.0	106.0	94.0	125.0
Krull	3864.0	6363.1	6796.1	8051.6	7406.5	8066.6	5560.0	5911.4
Kung-Fu Master	11875.0	20620.0	30207.0	24288.0	31244.0	3046.0	28819.0	40835.0
Montezuma's Revenge	50.0	84.0	42.0	22.0	13.0	53.0	67.0	41.0
Ms. Pacman	763.5	1263.0	1241.3	2250.6	1824.6	594.4	653.7	850.7
Name This Game	5439.9	9238.5	8960.3	11185.1	11836.1	5614.0	10476.1	12093.7
Phoenix			12366.5	20410.5	27430.1	28181.8	52894.1	74786.7
Pit Fall			-186.7	-46.9	-14.8	-123.0	-78.5	-135.7
Pong	16.2	16.7	19.1	18.8	18.9	11.4	5.6	10.7
Private Eye	298.2	2598.6	-575.5	292.6	179.0	194.4	206.9	421.1
Q*Bert	4589.8	7089.8	11020.8	14175.8	11277.0	13752.3	15148.8	21307.5
River Raid	4065.3	5310.3	10838.4	16569.4	18184.4	10001.2	12201.8	6591.9
Road Runner	9264.0	43079.8	43156.0	58549.0	56990.0	31769.0	34216.0	73949.0
Robotank	58.5	61.8	59.1	62.0	55.4	2.3	32.8	2.6
Seaquest	2793.9	10145.9	14498.0	37361.6	39096.7	2300.2	2355.4	1326.1
Skiing			-11490.4	-11928.0	-10852.8	-13700.0	-10911.1	-14863.8
Solaris			810.0	1768.4	2238.2	1884.8	1956.0	1936.4
Space Invaders	1449.7	1183.3	2628.7	5993.1	9063.0	2214.7	15730.5	23846.0
Star Gunner	34081.0	14919.2	58365.0	90804.0	51959.0	64393.0	138218.0	164766.0
Surround			1.9	4.0	-0.9	-9.6	-9.7	-8.3
Tennis	-2.3	-0.7	-7.8	4.4	-2.0	-10.2	-6.3	-6.4
Time Pilot	5640.0	8267.8	6608.0	6601.0	7448.0	5825.0	12679.0	27202.0
Tutankham	32.4	118.5	92.2	48.0	33.6	26.1	156.3	144.2
Up and Down	3311.3	8747.7	19086.9	24759.2	29443.7	54525.4	74705.7	105728.7
Venture	54.0	523.4	21.0	200.0	244.0	19.0	23.0	25.0
Video Pinball	20228.1	112093.4	367823.7	110976.2	374886.9	185852.6	331628.1	470310.5
Wizard of Wor	246.0	10431.0	6201.0	7054.0	7451.0	5278.0	17244.0	18082.0
Yars Revenge	001.0	(150 -	6270.6	25976.5	5965.1	7270.8	7157.5	5615.5
Zaxxon	831.0	6159.4	8593.0	10164.0	9501.0	2659.0	24622.0	23519.0

Resources

- Book: Reinforcement Learning An Introduction, Richard Sutton and Andrew Barto
 - Available online on Andrew Barto's website: <u>http://www.incompleteideas.net/sutton/book/the-book-1st.html</u>
- Course: Autonomously Learning Systems IGI TU Graz
 - 2016 website: http://www.igi.tugraz.at/lehre/Autonomously_learning_systems/WS16/
 - Next course in 2018
 - Lecture slides available there
- DQN: <u>https://deepmind.com/research/dqn/</u>
- OpenAI Gym: <u>https://gym.openai.com/envs</u>
- Deep Reinforcement Learning: Pong from Pixels (Andrej Karpathy): <u>https://karpathy.github.io/2016/05/31/rl/</u>
- Book: **Deep Learning**, Ian Goodfellow, Yoshua Bengio and Aaron Courville
 - Available online: <u>http://www.deeplearningbook.org</u>
- *RLPy: <u>https://rlpy.readthedocs.io/en/latest/</u> (python 2.7 only)*