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Statistical Generative Models

A statistical generative model is a probability distribution p(x)

- Data: samples (eg. Images of people)
- Prior Knowledge: parametric form ( Gaussian?), loss function etc.

It is generative because sample from p(x) generates new images
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Conditional Variational Autoencoder
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PixelRNN

- See pixels as a sequence
- Use a Recurrent Neural Network to predict next pixel
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Figure 1. Image completions sampled from a PixelRNN.



Generative Adversarial Networks
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DCGAN Techniques

« Use transposed convolution for upsampling.

. Eliminate fully connected layers.

« Use Batch normalization except the output layer for the generator and the
input layer of the discriminator.

« Use ReLU in the generator except for the output which uses tanh.

« Use LeakyReLU in the discriminator.



Issues with GANSs

- Setting up failure and bad initialization
- Problems with perspective
- Problems with global structures



Mode Collapse

- the discriminator essentially “wins” the game

- training gradients for the generator become less and less useful
- This happens when it generates the “same” sample all the time.
- Bigger the input/target size -> more likely it will happen



PROGAN (2017)



PROGAN - Intuition

- Gradually increasing the resolution
- the networks to learn a much simpler piece of the overall problem



Minibatch Standard Deviation

- Give the discriminator statistics on the batch data.
the standard deviations of the feature map pixels across the batch

-  GANSs tend to sample low variance samples.
- This forces the generator to give variance similar to the real data.



CycleGAN
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Cycle Consistency

- Transform picture from one domain to another

- A generator G to convert a real image to a target domain

- A generator F to convert from target domain to original

- Adiscriminator for indentifying real or fake target domain pictures

- This is the Cycle consistency loss which measures the L1-norm
reconstruction cost for the real image (x — y — reconstructed x) and the
Monet paintings (y — x — reconstructed y)
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BigGAN

- Introduces techniques for scaling GANs
- Introduces hierarchical latent values with noise
- Proposed model has 350M Parameters

A = great grey owl| B = beagle




StyleGAN

- PROGAN 2.0

- Further increase control in generating images

- Make the Features Disentangled as possible

- modifying the input of each level separately, it controls the visual features that
are expressed in that level, from coarse features (pose, face shape) to fine
details (hair color), without affecting other levels.



https://thispersondoesnotexist.com/
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Adaptive Instance Normalization
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GauGAN




Going beyond GAN?

- Models are getting too crazy at this point
- Can we make models more efficient with new discoveries?



VQ-VAE-2

VQ-VAE Encoder and Decoder Training

(a) Overview of the architecture of our hierarchical
VQ-VAE. The encoders and decoders consist of
deep neural networks. The input to the model is a
256 x 256 image that is compressed to quantized
latent maps of size 64 x 64 and 32 x 32 for the
bottom and top levels, respectively. The decoder
reconstructs the image from the two latent maps.

(b) Multi-stage image generation. The top-level
PixelCNN prior is conditioned on the class label,
the bottom level PixelCNN is conditioned on the
class label as well as the first level code. Thanks
to the feed-forward decoder, the mapping between
latents to pixels is fast. (The example image with
a parrot is generated with this model).
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VQ-VAE-2 Samples

Figure 1: Class-conditional 256x256 image samples from a two-level model trained on ImageNet.



Detecting Fakes



Deep Image Forgery Detection

- Build a CNN Image Classifier ( Fake/Not Fake)
- or/and create a mask to mark fake region.
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Fakecatcher

(a) Portrait (b)Face Regions (c) Biological Signals (d) Signal Transformations (e) Feature Vector Classifier
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Adobe Photoshop Detector
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