@ Machine Learning
Graz

Dealing with Imbalanced Data

10-Oct-2018

Adrian Spataru

Data Scientist at Know-Center
adrian(@spataru.at
https://www.fb.me/adrian.spataru.5


mailto:adrian@spataru.at

Outline

The Imbalanced Classes Problem
Loss Function Weighing
Undersampling Methods
Oversampling Methods

Feature Learning

Feature Engineering

Anomaly Detection

Resources



What is unbalanced Data?

e When the minority class, is much rarer than the other classes.




Why is this a Problem?

e ML Algorithms perform poor in unbalanced data.
e C(Classifiers designed to optimize accuracy
e Assuming uniformity of misclassification costs



Fraud Detection

e Assume Fraudisonly 1% of all transaction
e Create model and has 99% Accuracy




Fraud Detection

e Assume Fraudisonly 1% of all transaction
e Create model and has 99% Accuracy
e Model classifies everything as not fraud.




Evaluation

e Don’t use Accuracy!

TP TN
TP+ FP + TN - EN

Accuracy =

1S
o
o

e use Confusion Matrix
e use ROC Curves
e multiple metrics if possible
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Fraud Detection

e Misclassify Fraud comes at a high cost.
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Loss Weighting

e Most ML Algorithms have loss functions
e increase the loss when misclassify the minority class
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Loss Weighting

e Most ML Algorithms have loss functions
e increase the loss when misclassify the minority class
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Multiply with a value

LLoss =




Sampling Methods

e |fourdataisimbalanced, we will can make it balanced!
e Generate/Remove datato get it balanced



Random Undersampling

e Randomly Remove Data from Majority Class




Tomek Links

e Tomek links are pairs of opposite classes which are close
e Increases the separation between classes
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NEARMISS- 1

e NearMiss-1 selects samples from the maijority class for which the average
distance to K nearest neighbours is the smallest.
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NEARMISS- 2

e NearMiss-2 selects samples from the maijority class for which the average
distance to the K farthest neighbors is the smallest.

NearMiss-2
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Nearmiss combined
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Random Oversampling

e Oversample minority class by randomly “copying” points from the class



Synthetic Minority Oversampling Technique(SMOTE)

e Find "k-nearest neighbors” of an anchor point x. from minority class
e Randomly select one of the nearest neighbors and interpolate randomly
between the two
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Adaptive Synthetic Sampling (ADASYN)

e Generate minority data samples according to their distributions
e more synthetic data for minority class samples that are harder to learn
e |esssynthetic data for minority samples that are easier to learn.

Resampling using SMOTE Resampling using ADASYN

Resampling using ADASYN



Ensemble

e Ensemble multiple sampling methods
e Ex:SMOTE + Token Links



Ensemble

e Ensemble multiple sampling methods
e Ex:SMOTE + Token Links
e Bagging and Bootstrapping (Ex. Subset-SMOTE)




Imbalanced-learn

e Easy sklearn-like API
e Can be used in sklearn Pipelines
e Supports all major resampling methods

from sklearn.svm import LinearSVC
from imblearn.under_sampling import NearMiss
from imblearn.pipeline import make_pipeline

pipeline = make_pipeline(NearMiss(version=2),
LinearSVC())

pipeline.fit(X_train, y_train)



Feature Learning

Create generative model on the minority class

If done well, it can outperforms resampling
Generative model have more parameters to tune.
May take longer due to training. ( Neural Network)



Synthetic Minority Reconstruction Technique ( SMRT)

Train variational autoencoder on the data
oversampling -> sampling the autoencoder
Performs very well

Requires lot of data and training epochs

I
ST
swore H

d



Feature Engineering

e Create Features which help separation of the classes
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Simplé PC Cosine Kernel PCA



Anomaly Detection

e Treatproblem as aanomaly detection problem
e Use ML Algorithms and methods dedicated for such tasks



One Class SVM

One-class SVM

Y

Source:http://www.geocities.jp/mabonakai/sub/ex_oneCsvm.htm



Isolation Forest
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Resources

e SMRT: https://github.com/tgsmith61591/smrt
e |[mbalanced-learn: http://imbalanced-learn.orqg/

Kubat, Miroslav, Robert C. Holte, and Stan Matwin. "Machine learning for the detection of oil spills in satellite radar images." Machine
learning 30.2-3 (1998): 195-215.


https://github.com/tgsmith61591/smrt
http://imbalanced-learn.org/
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